加减法

题目大意:在一个无向图里面每次可以选择一条边,使得这条边的一个端点加1,另一个端点减1

\(\sum i\times val[i]\)

题目分析:

1
考虑在同一个联通块里面,可以随意分配名额,所以我们尽量使得编号大的权值最大就好

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#include <bits/stdc++.h>
#define int long long
using namespace std;

const int N = 2e5 + 66;

int to[N << 1], nex[N << 1], head[N], cnt;

inline void add_edge(int x, int y)
{
to[++ cnt] = y;
nex[cnt] = head[x];
return (void)(head[x] = cnt);
}

vector <int> v[N];
int n, m, L, tot;
int vis[N], val[N], w[N];

inline void dfs(int x, int num)
{
int i, y;
w[num] += val[x], v[num].push_back(x);
vis[x] = 1;
for (i = head[x]; i; i = nex[i])
{
y = to[i];
if (vis[y]) continue;
dfs(y, num);
}
return;
}

inline int fuck(int x)
{
sort(v[x].begin(), v[x].end());
int s = v[x].size(), ret(0), i, y;
for (i = 0; i < s; ++ i)
{
y = v[x][i];
val[y] = 1;
}
w[x] -= s;
for (i = s - 1; i >= 0; -- i)
{
y = v[x][i];
val[y] += min(L - 1, w[x]);
if (val[y] != L) w[x] = 0;
else w[x] -= (L - 1);
if (w[x] <= 0) break;
}

for (i = 0; i < s; ++ i)
{
y = v[x][i];
ret = ret + y * val[y];
}
return ret;
}

signed main()
{
int i, j, x, y, res(0);

n = read(), m = read(), L = read();
for (i = 1; i <= n; ++ i) val[i] = read();

for (i = 1; i <= m; ++ i)
{
x = read(), y = read();
add_edge(x, y), add_edge(y, x);
}

for (i = 1; i <= n; ++ i) if (! vis[i]) ++ tot, dfs(i, tot);
for (i = 1; i <= tot; ++ i) res += fuck(i);
put(res);
return 0;
}